WATER: A Workload-Adaptive Knob Tuning System

Abstract

Selecting appropriate values for the configurable parameters of
Database Management Systems (DBMS) to improve performance is
a significant challenge. Recent machine learning (ML)-based tuning
systems have shown strong potential, but their practical adoption is
often limited by the high tuning cost. This cost arises from two main
factors: (1) the system needs to evaluate a large number of configu-
rations to identify a satisfactory one, and (2) for each configuration,
the system must execute the entire target workload on the DBMS,
which is both time-consuming and resource-intensive. Existing
studies have primarily addressed the first factor by improving sam-
ple efficiency, that is, by reducing the number of configurations that
must be evaluated. However, the second factor, improving runtime
efficiency by reducing the time required for each evaluation, has
received limited attention and remains an underexplored direction.

We develop WATER, a runtime-efficient and workload-adaptive
tuning system that finds near-optimal configurations at a fraction
of the tuning cost compared with state-of-the-art methods. Instead
of repeatedly replaying the entire target workload, we divide the
tuning process into multiple time slices and evaluate only a small
subset of representative queries from the workload in each slice.
Different subsets are evaluated across slices, and a runtime profile
is used to dynamically identify more representative subsets for eval-
uation in subsequent slices. At the end of each time slice, the most
promising configurations are selected and evaluated on the origi-
nal workload to measure their actual performance. Technically, we
design a query-level metric and propose a novel Greedy Algorithm
that continually refines the query subset (e.g., removing uninforma-
tive queries and adding promising ones) as the tuning progresses.
We then develop a hybrid scoring mechanism, built upon a global
surrogate model, to balance exploitation and exploration and to
recommend promising configurations for evaluation on the entire
workload. Finally, we evaluate WATER across different workloads
and compare it with state-of-the-art approaches. WATER identifies
the best-performing configurations with up to 73.5% less tuning
time and achieves up to 16.2% higher performance than the best-
performing alternative. We also demonstrate WATER’s robustness
across different hardware platforms and optimizers, as well as its
scalability across database sizes.

1 Introduction

Database management systems (DBMSs) rely on many configura-
tion parameters (i.e., knobs) to control their behavior [35]. Tuning
these knobs is crucial for achieving high performance [43]. Conven-
tionally, these knobs are adjusted manually by database administra-
tors (DBAs), involving extensive workload, system, and hardware
analysis. However, DBAs encounter substantial difficulties identify-
ing promising configurations for a specific workload due to the high
dimensionality of the configuration space, where each knob can
have continuous or discrete values (heterogeneity). This challenge
becomes even more pronounced in the cloud, where the underlying
hardware resources can vary significantly across DBMS instances.

Recent works focus on using Machine Learning (ML) techniques
to automate knob tuning to reduce the manual tuning efforts, and
have shown promising results [5, 9, 12, 17, 21, 23, 48, 49, 54, 57-59].
These ML-based tuning systems iteratively select a configuration
using a tuner, balancing between the exploration of unseen regions
and the exploitation of known space. The selected configurations
are then evaluated by executing the target workload on the DBMS.
Since it is challenging to explore the high-dimensional and hetero-
geneous search space, many techniques are proposed to explore the
space efficiently, such as search space pruning [23, 59] and transfer
learning [5, 27, 42, 57].

Although state-of-the-art systems reduce the required iterations
to only hundreds to identify ideal configurations, the tuning cost is
still high because it takes a long time to execute the workload in
each iteration. For example, in our experiment in Figure 8, it takes
10 minutes to execute the 22 queries in the TPC-H benchmark with
a scale factor of 50, leading to about 17 hours of optimization for
100 valid iterations. Figure 1 shows the breakdown of the tuning
time of a state-of-the-art method [23] for TPC-H benchmark under
different scale factors. Notably, more than 70% of tuning time is
spent on executing the target workload on DBMS, and this becomes
more pronounced (e.g., more than 97%) as the data size increases
or the workload becomes more complex, an observation similar to
previous work [43].

Therefore, we argue that it is important to reduce the workload
execution time while keeping the tuning effective, given that the
major tuning costs come from substantial workload execution time,
a factor overlooked by prior research. In this paper, we propose a
new concept of runtime efficiency, which refers to minimizing the
workload execution time in each tuning iteration and thus achieving
the overall minimum tuning time. This approach is compatible
with previous works focusing on decreasing the number of tuning
iterations, but goes one step further by trying to reduce the running
time of each iteration.

100

50

Percentage (%)

TPC-H(sf=5) TPC-H(sf=10) TPC-H(sf=50) TPC-H(sf=10)
22 SQLs 22 SQLs 22 SQLs 220 SQLs

Figure 1: Tuning Time Breakdown (Percentage)

However, achieving runtime efficiency of knob tuning presents
several challenges. C1. It is non-trivial to reduce the workload
execution time. There are two possible ways to cut down the work-
load execution time: one is to decrease the volume of the target
database and the other is to reduce the number of queries in the
workload (workload compression). Decreasing the data volume
by sampling a subset of data can severely affect the performance.

Conference’17, July 2017, Washington, DC, USA

Because knob tuning is highly sensitive to the underlying data,
reducing the data size is likely to change the performance bottle-
neck and thus mislead the tuning process. In contrast, workload
compression [2, 6-8, 16, 39] presents a promising approach. It aims
to identify a substitute query subset that approximates the runtime
behavior of the DBMS under the full workload, without signifi-
cantly degrading the performance of workload-driven tasks like
index tuning [7].

Unfortunately, C2. It is challenging to obtain a compressed
workload that is truly representative for the specific task of
knob tuning. While there has been substantial work on workload
compression [2, 7, 8, 16, 39, 53], these techniques are not effective
in our context because they were originally designed for index
tuning [2, 7, 39, 52, 53], which is a fundamentally different prob-
lem that focuses on selecting table columns for index construction.
These methods often rely on query-level features such as shared
“indexable columns”, which do not translate to the knob tuning
task. Index-agnostic approaches, including random sampling and
GSUM [8], only use generic workload information and therefore per-
form sub-optimally for specialized tasks (e.g., index tuning or knob
tuning), as confirmed by our experimental results in Section 8.2.
Selecting a representative subset of queries as the compressed work-
load for knob tuning remains an open challenge.

C3: Knob tuning introduces new challenges when applying
workload compression, as good performance on a subset of the
workload does not necessarily imply good performance on the
full workload. When tuning one subset, we only evaluate the con-
figurations on this subset. However, a good configuration for this
subset does not necessarily perform well on the original workload,
and may even lead to performance degradation. Moreover, even if
the tuning is guided by advanced optimization algorithms [14, 40],
there is no guarantee that the configurations recommended later are
better than the previous ones (not monotonic). Therefore it is infea-
sible to simply evaluate configurations from later iterations on the
original workload. We need a sophisticated mechanism to identify
well-performing configurations for the entire workload without
verifying every proposed option, as doing so is exhausting and
would negate the benefits of workload compression. Challenges
remain regarding how to determine whether a configuration is
worth evaluating, how to trade off between subset tuning and con-
figuration verification, whether the subset should be dynamically
updated and if so, how to achieve that.

Our Approach. To address these challenges, we develop WATER,
a runtime-efficient and workload-adaptive tuning system, and it
identifies near-optimal configurations at a fraction of the tuning
time compared to state-of-the-art methods. The key observation of
WATER is that aforementioned limitations of existing approaches
(C1 and C2) are rooted in the intractable difficulty to find a per-
fect subset in one try. Differently, WATER starts with an imperfect
subset and continually refine it based on runtime profile on the fly
(Section 5.3). Instead of replaying the whole workload or a fixed
subset repeatedly, we divide the tuning process into many time
slices and evaluate different subsets at different time slices (Section
5.1). To continually refine the subset as the tuning proceeds, we
carefully design a runtime metric to measure the representativity of
a subset to its original workload (Section 5.2), and propose a novel
greedy algorithm based on this metric (Section 5.3). Moreover, to

mitigate the overhead of switching between tuning different sub-
sets, we develop a history reuse mechanism for efficient subset
tuning (Section 6). Regarding C3, we design heuristic-based rules
to prune unpromising configurations (e.g., configurations perform
significantly worse than the default configuration are discarded).
After pruning, we propose a hybrid scoring mechanism to score
and rank configurations, only verifying the most promising con-
figurations on the original workload. The scoring mechanism is
based on a global surrogate model, predicting the performance as
well as the uncertainty of the prediction for configurations to bal-
ance between exploration and exploitation (Section 7). Finally, we
conduct extensive experiments to evaluate WATER's effectiveness,
robustness and scalability.

Experimental Overview. Our extensive experiments demonstrate
WATER’s decisive advantages over state-of-the-art tuners across
multiple OLAP benchmarks. On average, WATER finds optimal con-
figurations 4.2x faster while discovering superior solutions that
yield up to 16.2% better final performance, with time-to-optimal
speedups reaching a remarkable 12.9% on complex workloads. This
state-of-the-art performance is proven to be robust across different
hardware, optimizers, and larger database scales where WATER’s
runtime efficiency provides the greatest benefit. A detailed abla-
tion study confirms the criticality of each of our core components,
while a cost analysis reveals that WATER’s efficiency stems from
drastically reducing the dominant cost of workload evaluation time.
Contributions. Our contributions are as follows. (1) We develop
WATER, a runtime-efficient knob tuning system that identifies near-
optimal configurations at a fraction of the tuning time compared
to state-of-the-art methods. (2) We introduce a new paradigm that
applies workload compression to enhance the knob tuning process
and identify the associated technical challenges. (3) We develop
a set of techniques to address these challenges, including: a time-
slicing design that partitions the tuning process into multiple time
intervals and evaluates different query subsets across them (Section
4); an adaptive mechanism that incrementally refines the query
subset using a greedy algorithm to make it increasingly represen-
tative of the complete workload based on runtime feedback (Sec-
tion 5); a history reuse mechanism that minimizes the overhead of
switching between query subsets (Section 6); and a hybrid scoring
algorithm that selects only the most promising configurations for
validation (Section 7). The source code for WATER is available at:
https://anonymous.4open.science/r/WAter-1BDD.

2 Background and Related Work
2.1 Database Knob Tuning

Database Tuning Problem. We formulate database knob tuning
as an optimization problem. Given a target workload W and the con-
figuration space ©, the performance metric is given by an objective
function fiy : ® — R, that projects each configuration to a value
of the performance metric (e.g., latency or throughput). Database
knob tuning aims to find a configuration 8* € ©, where

0" = arg max fiy () (1)
0O

Finding an optimal database configuration is challenging due
to the vast configuration space. Such difficulty goes beyond the

https://anonymous.4open.science/r/WAter-1BDD

WATER: A Workload-Adaptive Knob Tuning System

capability of even the best human experts, so database community
turns to ML-based automatic tuning methods.

ML-based Knob Tuning. Recently, ML-based approaches have
demonstrated promising results, achieving better performance than
human DBAs as well as static rule-based tuning tools [41, 46].
Moreover, ML-based approaches are automatic and can adapt well
to a variety of workloads and hardware configurations. Figure 2
presents the paradigm of the ML-based knob tuning framework
which mainly contains (i) a tuner that suggests a configuration
over a given search space to improve the pre-defined performance
metrics, and (ii) a DBMS instance that runs the workload under
the proposed configuration to obtain the performance metric. The
knowledge base D = {6;, fiw(6;)} is an optional component which
records all previously evaluated configurations, and updates every
time a new evaluation is conducted. These systems can be broadly
classified into two main categories based on the techniques used in
the tuner: Bayesian Optimization (BO)-based [40] and Reinforce-
ment Learning (RL)-based [14].

Knowledge Base = 9.

o Access Past
observations

Tuner)
Suggest new

Optimizer « m Su%?ocga!ne o configuration DBMS
Lo —

{1

Figure 2: Overview of Knob Tuning Paradigm

e RL-based. RL-based methods explore the configuration space
in a trial-and-error manner. The agent (e.g., a neural network)
iteratively tries new configurations and learns from the rewards
(e.g., performance improvement or degradation) obtained from
the environment (e.g., DBMS). Deep Deterministic Policy Gradient
(DDPG) [28] is the most popular RL algorithm adopted in knob
tuning [12, 27, 54], as DDPG can work over a continuous space.

e BO-based. BO-based methods [5, 9, 23, 24, 42, 57, 58] model
the tuning as a black-box optimization problem. BO consists of
two main components: (1) surrogate model is an ML model to ap-
proximate the objective function fiy, given a set of observations
{6;, f(6;)}. It provides both a prediction and the confidence of the
prediction for an unseen configuration. (2) acquisition function uses
the surrogate model’s outputs to choose which candidate point to
evaluate next, balancing between exploitation and exploration.

e Tuning Frameworks. Frameworks such as MLOS [20] do not
directly improve tuning efficiency, but serve to bridge the gap
among benchmarking, experimentation, and optimization. In con-
trast, other frameworks like OtterTune [42] and LlamaTune [17]
are designed to enhance tuning efficiency. These frameworks focus
on sample efficiency and are orthogonal to our work, which focuses
on runtime efficiency. They can co-exist with WATER to further
enhance the performance of existing optimizers.

Performance Comparison. According to [55], RL-based meth-
ods require more iterations to work well due to the complexity
of the neural networks used. The majority of previous works use
BO-based methods, and [55] concluded that the best performing
optimizer was Sequential Model-based Algorithm Configuration

Conference’17, July 2017, Washington, DC, USA

(SMAC [30]), since it is efficient in modeling the heterogeneous
search space. With the recent advent of Large Language Model
(LLM), GPTUNER [23] uses LLM to read manuals and constructs
structured knowledge to guide the BO-based tuning process. We re-
gard GPTUNER and SMAC as the current state-of-the-art methods with
and without text as inputs. We integrate WATER with these methods.

2.2 Workload Compression

Workload compression is first studied in [7]. Given a workload W, it
aims to find a SQL subset W’ (W’ has fewer queries and each query
comes from W), such that the workload execution cost is reduced
(fewer queries to execute for knob tuning, or fewer columns to
consider for index tuning), and the tuning performance does not
degrade too much at the same time. However, the performance
degradation is inevitable in practice. Existing works essentially
trade performance for runtime efficiency [2, 8, 16, 39]. The primary
aim of our work differs significantly from previous works. Instead
of trading performance for runtime efficiency, our approach can
achieve superior performance compared to tuning the original
workload within the same time budget, as reduced iteration costs
allow for more thorough exploration of the configuration space. A
detailed formulation of the problem and its underlying intuition
can be found in Section 5.1.

There are both generic and indexing-aware workload compres-
sion techniques in the literature. GSUM [8] is a recent generic
workload compression system that maximizes the coverage of fea-
tures (e.g., columns contained) of the workload while ensuring that
the compressed workload remains representative (i.e., having simi-
lar distribution to that of the entire workload). For indexing-aware
compression, ISUM [39] selects queries greedily based on their
potential to reduce the costs and the similarity between queries,
and the two metrics are computed using indexing-specific featur-
ization. The most recent work, WRED [2], rewrites each query in
the original workload to eliminate columns and table expressions
that are unlikely to benefit from indexes. These methods compress
the workload in a single step, lacking further refinement. More
importantly, they require manual feature engineering of queries,
and some even require indexing-specific features, making these
methods not applicable to knob tuning. In contrast, WATER focuses
on knob tuning that seamlessly integrates workload compression
through the entire tuning process, continuously refining the subset.
Additionally, WATER does not rely on any form of featurization;
instead, it selects queries based on runtime statistics, allowing it to
handle any executable query. In comparison, methods like WRED
are unable to handle 19 out of 99 queries from TPC-DS that its
parser cannot process.

A recent concurrent work, SCompression [3], also addresses
the high cost of workload execution and targets Online Transac-
tion Processing (OLTP) workloads. It uses time-slices as the com-
pression unit to preserve the inherent concurrency and temporal
relationships of the original workload, and performs a one-time,
static compression to generate a fixed workload that is used for the
entire tuning process. In contrast, our approach in WATER is funda-
mentally different in several key aspects. First, WATER is designed
specifically for OLAP workloads, where it operates by selecting a
representative subset of individual queries from the entire work-
load. Our experiments in Section 8.2 show that compressing OLAP

Conference’17, July 2017, Washington, DC, USA

workloads for knob tuning is a non-trivial task. Existing OLAP
compression techniques, such as GSUM [8] and random sampling,
yield poor performance in this setting. More importantly, unlike
SCompression’s static approach, WATER introduces a dynamic and
adaptive compression strategy that continually refines its selected
query subset throughout the tuning process based on an evolving
runtime profile. This adaptability prevents the tuning process from
being misled by a fixed suboptimal subset, ensuring more robust
optimization results. We summarize the main differences between
them in Table 1.

Table 1: Main Difference between WAter and SCompression

Target Workload | Comp. Unit | Strategy
WAter OLAP Query Dynamic
SCompression OLTP Time slice Static

Some works on training data collection also involve sampling
a SQL subset from the original workload. However, they focus on
different application scenarios. From the perspective of model train-
ing, these works either aim to minimize the cost to obtain a labeled
training dataset [29, 31] or select the most valuable training data
(queries) [51] for a learned database component (e.g., learned cost
estimators) effectively. Moreover, in contrast to knob tuning, their
target workload is typically a streaming query workload produced
in the online scenario, rather than a fixed set of queries.

3 Motivation

In this section, we discuss the motivations behind the design and
implementation of WATER as well as how this paper is structured.
M1: The search space for knob tuning is extremely large yet
underexplored. The search space of knob tuning is extremely
large due to: (1) the large number of knobs that require tuning,
and (2) the wide value range for each knob. For example, Post-
greSQL v14.9 has 346 knobs, and some most frequently tuned
knobs like shared_buffers range from 0.125 MB to 8192 GB, and
random_page_cost can be set to any real value between 0 and
1.79769 x 10°%8, Moreover, some methods [5, 58] even add contex-
tual information (e.g., workload feature) into the space which could
further expand it. In the literature, it is commonly assumed that the
number of evaluations required to find an optimum is proportional
to the size of the search space [50]. However, existing ML-based
tuning methods only conduct hundreds to at most thousands of
samplings and evaluations [5, 17, 23, 38, 57, 59], which is very sparse
in such a colossal search space. The exploration of the search space
is insufficient, and we need to explore it more thoroughly to identify
better configurations.

M2: Under-exploration stems from high workload execution
time, workload compression presents a promising method to
reduce the costs. As discussed in Section 2.1, evaluating a configu-
ration requires executing the target workload, with each workload
execution taking minutes or more. Such high costs greatly limit
the number of configurations to try. A naive approach to mitigate
M1 involves sampling a small subset of queries from the original
workload. By executing fewer queries, we decrease the workload
execution time, allowing for exploration of a larger portion of the

4— original —A— subset-2
subset-1 —¥— subset-3
86
0
[0}
S)
=
5 78 ~
- b=
£
L ¢
ey o
70 *
4000 8000 12000

Tuning Time (s)

Figure 3: Tuning Subsets VS Tuning the Original Workload

search space within a given time budget. We conduct an experi-
mental study for this idea by randomly sampling 3 subsets of 26
queries from TPC-DS’s 88 queries, using GPTUNER [23] as the
optimizer for its efficiency. Whenever a proposed configuration out-
performs the default configuration on the subset, this configuration
is immediately evaluated on the original workload to obtain real
performance. We also use GPTUNER to tune the original workload
directly as a comparison. Figure 3 shows the latency of the best
configuration found (y axis) as a function of optimization time (x
axis). It is worth noting that tuning a subset can make the tuner
produce well-performing configurations with much less time. The
reason is that reduced execution time enables more configuration
evaluations, improving exploration and increasing the likelihood
of finding optimal solutions.

M3: Identifying a representative subset is important but very
challenging. From Figure 3, we find that different subsets can lead
to different optimization results, and a bad subset can make the
optimization stuck in local optima and fail to find better configu-
rations even after a long tuning time. An interpretation could be
that, tuning a subset essentially involves optimizing an alternative
objective function that approximates the real objective function
of the entire workload, and the similarity between the objective
functions of query subsets and the objective function of the original
workload differs greatly for different subsets. A more representative
subset can result in faster and more thorough optimizations, while
a bad subset could even mislead the process. Selecting a good subset
is critical for the end-to-end tuning performance, but unfortunately,
we do not even have a method to quantify the representativity of a
subset to its original workload in the context of knob tuning.

M4: It is nearly impossible to find a perfect subset in a single
attempt, but we can continually refine the subset based on the
evolving runtime profile. Knob tuning is such a complex problem
which involves almost all aspects of a DBMS, including resource
management, background process management, query optimization
and execution, and so on [60]. Therefore, it is almost impossible
to identify a perfect subset at the beginning in a single attempt,
just based on the workload information. Given the iterative nature
of knob tuning, runtime statistics are accumulated incrementally
throughout the tuning process. So it is reasonable to select a good
but not perfect subset as the starting point, and then we continually
refine this subset based on the evolving runtime profile.

Outline. To alleviate the under-exploration issue caused by costly
workload execution (M1), we propose to just tune a subset and find

WATER: A Workload-Adaptive Knob Tuning System

User Request
Workload
Objective

DBMS

History
i
R ®

Figure 4: Overview of the Components in the WATER System

WATER Tuner

=
<:> @ Subset
Tuning Manager

© Selective
Config. Verifier | | Output

Config.

Controller

this approach promising (M2). Although we find that identifying
a representative subset is crucial for effective tuning, this process
is challenging due to the absence of a metric to quantify the rep-
resentativity of a subset to its original workload (M3). Moreover,
given the complexity of knob tuning, it is too difficult to identify a
representative subset in a single attempt (M4). Therefore, we make
the following technical contributions. To handle M3, we propose
(1) a representativity metric based on runtime profile in Section
5.2, and (2) use a greedy algorithm to compress the workload in
Section 5.3. Based on M4, we develop (3) a workload-adaptive knob
tuning framework that periodically updates the subset in Section
4. Moreover, it (4) reuses runtime statistics for efficient subset tun-
ing in Section 6, and (5) prunes, scores and ranks the proposed
configurations for verification in Section 7.

4 System Overview

WATER is a workload-adaptive knob tuning system that speeds
up the tuning process by reducing workload execution time using
workload runtime profile. The high-level idea is that instead of
repeatedly executing the entire complex workload, we split the
tuning process into a series of short time slices and evaluate only a
small subset of SQL queries in each. A time slice is a tuning cycle,
where WATER selects a representative SQL subset (Section 5), tunes
the subset to obtain configurations (Section 6) and finally evalu-
ates promising configurations over the original workload (Section
7). Different subsets are selected in different time slices, and we
continuously refine the subset based on evolving runtime profile.
Architecture. Figure 4 presents an overview of the architecture of
WATER. On the client side, the user provides the target workload, op-
timization objective (e.g., throughput or latency) and the DBMS to
tune. The controller deploys new configurations on DBMS, executes
a set of queries, and collects performance metrics. WATER interacts
with the controller to request query execution under specified con-
figurations, gather the resulting execution data, and store it in the
history repository. WATER contains three modules corresponding to
the three steps in a time slice. First, the workload compressor uses
the runtime profile to select a representative subset of queries from
the target workload. Second, the subset tuning manager designates
this SQL subset as the target workload for the current time slice and
reuses existing tuning history to bootstrap the tuner’s surrogate,
thereby enabling efficient subset tuning. Third, the selective config-
uration verifier prunes, ranks, and selects configurations proposed
when tuning the aforementioned subset. We then verify the most
promising configurations on the original workload to measure their
actual performance.

Conference’17, July 2017, Washington, DC, USA

Workflow. Figure 5 shows the tuning workflow. Instead of repeatedly
replaying the entire workload or a fixed set of SQL queries, WATER
divides the tuning process into multiple time slices, each evaluat-
ing a small subset of queries. The tuning consists of a sequence of
time slices, with each slice comprising three steps: @ Workload
Compression: Given an input workload, WATER uses a greedy
algorithm driven by runtime statistics to compress the workload,
aiming to maximize a custom representativity metric (Section 5).
Since there is no runtime profile at the beginning, WATER uses exist-
ing methods like GSUM or random sampling to initialize the subset.
® Subset Tuning: WATER reuses its tuning history to initialize
the local surrogate model for the current subset, thereby enabling
efficient subset tuning that yields a series of configurations (Section
6). ® Configuration Verification: WATER uses heuristic rules
and a hybrid scoring mechanism to identify the most promising
configurations proposed in step @, which it then evaluates on the
entire workload to determine their actual performance (Section 7).

5 Workload Compression

In this section, we redefine the workload compression problem for
knob tuning (Section 5.1), introduce a runtime metric to measure
the representativity of a SQL subset (Section 5.2), and present a
greedy algorithm that optimizes this metric for runtime-adaptive
workload compression (Section 5.3).

5.1 Problem Formulation

We first formulate the conventional workload compression problem
and then redefine it within the context of knob tuning.

First, we formally define what is an original workload, a com-
pressed workload and the corresponding compression ratio.

Definition 5.1 (Original Workload). Original Workload is a multi-
set W = {qu, ..., qn} consisting of n SQL queries. Users’ goal is to
minimize the latency when executing this workload.

Definition 5.2 (Compressed Workload). Compressed Workload W’
is a subset of W : W/ € W. Formally, W = {qy, ..., qm} where
qi € Wand m < n.

Next, since workload compression task should be constrained
by a given budget B, we define a cost of each query as follows:

Definition 5.3 (Query Cost). Each SQL query g; is associated with
a non-negative cost c(q;), where c(q;) is a function that quantifies
the cost a query introduces to the tuner A in completing the tuning
task. This cost could, for example, represent the number of indexable
columns considered for index tuning, or the query execution time
for knob tuning.

Definition 5.4 (Compression Ratio). Compression Ratio,n =1 —
%, is the fraction of workload that has been pruned.

Let C(W) be the execution time of workload W under the default
configuration, and Cxw»,4)(W) be its execution time under the
configuration K(W’, A) recommended by tuner A for subset W’.

The conventional workload compression problem is defined as
follows: given a compression budget B > 0, construct a compressed
workload W’ € W such that [2, 7, 39]:

® Yqew ¢(q) < B, ie, the cost of the compressed workload is
less than the budget.

Conference’17, July 2017, Washington, DC, USA

Time Slice 1

Cold-start Compression

Workload
Compression

[Input Workload W]

|
| |
| |
| |
| 1 GSUM or Sampling :
|
| |
| Compressed W1’ :
|

Runtime-Adaptive Compression

Time Slice 2

Representativity

v
@ P

Workload W Greedy Algorithm Compressed W2’

9 : Optimizer . ﬂ: | Optimizer HHistgryB - : Optimizer
in 1101005102
X n | nf21-Oamy |
History Reuse | | ~ DBMS ol T Y o DBMS -]
for Efficient | | $ Conflg, — ' ! t Confl, i
Subset Tuning : SRR Perf. g | oA ———— S 4 Y Perf. ! mi
| (MAAN - 1 (AN (Sah
| Local Surrogate 1 X Local Surrogate 2
SRR - S, AN | el Y
e : s | : Pl
oot T
Configuration | ! Y — R 1 Prune
" | 3 > |
Rankingand | |+ 8 = : o
Verification : — VS x 1 : —
| Ranked Configs | | | Ranked Configs
| I 1 | ! |
———————————————————— — ——_I_______——————————————J
i[— | | - |
X : the performance is available | : Exp:oramﬂ % y Train Exploration & }
| xploitation Exploitation
I Train b —— m Global Surrogate | —— X ‘

Figure 5: WATER Tuning Workflow

e W’ = argmax C(W) — Cx(w, a)(W), i.e., the reduction in
W’ W
the execution time of W is maximized when using the con-
figuration K(W’, A).

Existing methods on workload compression reduce tuning costs
by identifying a subset of SQL queries to tune, which takes less time
to execute and can serve as the representative of the original work-
load. These approaches prioritize a reduction in tuning time (i.e.,
runtime efficiency) at the expense of the resulting configuration’s
performance [2, 8, 16, 39].

While our method produces a configuration that achieves bet-
ter performance than tuning on the full workload given the same
tuning time. Given a time budget t, we redefine the workload com-
pression problem in the context of knob tuning as follows:

maximize CK(W, A t) (W) - CK(W’, A t) (W)

subjectto Y cw c(q) <B, W CW,

where K(W, A, t) is the configuration recommended by tuner A for
W within time budget ¢, and c(q) is the execution time of query q
under the default configuration. Following prior work [2, 7, 8, 39],
workload compression must be highly efficient, avoiding expensive
operations like query execution or computing complex statistics.
There is an inherent trade-off between the quality of feedback
and the associated evaluation cost in each tuning iteration. Tra-
ditional methods execute the entire workload to obtain feedback,
producing high-quality results but incurring substantial overhead.
In contrast, our method evaluates only a subset of the workload

to reduce costs. Although this sacrifices some accuracy in each
feedback iteration, it enables a greater number of tuning iterations
within the same time constraints. As discussed in M1 and M2, given
the extremely large search space, the number of tuning iterations
is insufficient to explore such a large space, and this is the main
bottleneck of knob tuning. To address this challenge, we select a
representative subset for tuning, trading off per-iteration feedback
quality for an increased overall number of iterations, and finally
achieving better performance than tuning the original workload
under the same time budget. Moreover, we propose methods to
mitigate the impact of reduced per-iteration quality as much as
possible, which are discussed next.

Although W allows faster convergence by evaluating more con-
figurations due to reduced workload execution time, K (W, A, t) will
eventually outperform K(W’, A, t) with a sufficiently large tuning
time budget ¢. This happens because W’ is just an approximation
of W, and the bias between them will eventually lead to the opti-
mization stagnating in later stages (see Figure 3). To address this,
instead of maintaining a fixed compression ratio 7, we: (1) refine
the SQL subset without changing 7, (2) once the subset’s capacity
is reached, decrease 1 to include more queries. This strategy bal-
ances the efficiency of subset tuning with the thoroughness of full
workload tuning as the process continues.

5.2 Representative Subset

In this section, we introduce a representativity metric to measure
how closely a selected subset’s behavior aligns with the original
workload in the context of knob tuning.

WATER: A Workload-Adaptive Knob Tuning System

What is a representative subset? A representative subset is a
small collection of queries whose performance accurately mirrors
that of the full workload across different system settings. The goal
is to preserve relative performance: if configuration A is faster than
configuration B on the subset, it must also be faster on the full
workload. This alignment is essential because system tuning relies
on knowing whether one configuration is better than another, not
on their absolute execution times. A truly representative subset
ensures optimization decisions are based on this reliable ranking.
This is why many statistical and other methods [2, 6-8, 39] are inad-
equate—they fail to maintain this critical performance relationship
across configurations.

Representativity Metric Definition. Before introducing repre-
sentativity, we need to maintain a run history defined as follows.

Definition 5.5 (Run History). Run history H is a two-dimensional
table recording each query’s execution time across all evaluated
configurations. Specifically, H[q, 6] represents the execution time
of q under configuration 6.

ExampLE 1. Table 2 illustrates an example of run history. The
execution time of the workload ¢, g2, - . ., ¢n under configuration 6,
denoted by H[q1, gz, - - ., qn, 0], is the sum of the individual query
execution times: H[q1, 0] + H[q2, 6] + - - - + H[qn, 0].

The run history is updated each time a query is executed. Using
this run history, we calculate representativity based on concor-
dant performance pairs [38, 59]. For two configurations, 6; and
0, and two workloads, W and W’, a performance pair is con-
cordant if the ranking of (H[W, 0;], H[W, 0;]) matches that of
(H[W’,6,], H[W’, 05]). Here, H[W, 0,] denotes the execution time
of workload W under configuration 6;.

Definition 5.6 (Representativity). Representativity of a compressed
workload W’ to its original workload W can be computed as:

) 9 |H| [H|
R(W', W) W;; (1(H[8;, W] < H[0, W])

®1(H[0;,W'] < H[0, W']).

@
where |H| is the number of configurations in H, and & is the
exclusive-nor operator. Essentially, representativity is the ratio of
concordant performance pairs between the two workload in the
history H.

ExXAMPLE 2. Assume we have obtained the execution time of
W as (4, 5, 7) and W’ as (3, 2, 6) over three configurations 61, 0,
and 03, respectively. Then R(W’, W) is computed as follows:

1. Pair the configurations in all possible combinations. We get
(01,02), (61, 05) and (62, 03).

2. Judge the consistency of the performances of the two work-
loads on each configuration pair. We get 1(4 < 5) ©1(3 < 2) =
0, 1(4<7)®1(3<6)—1and1(5<7)®1(2§6):1.

3. Compute R(W', W) = w 3

Representativity R(W’, W) ranges from [0, 1]. A higher R(W’, W)
indicates that W’ performs more similar to W across different
configurations, and thus W’ is more representative. In practice,
R(W’, W) typically falls within (0.5, 1], since random performances

Conference’17, July 2017, Washington, DC, USA

yields R(W’, W) = 0.5. When R(W’, W) = 1, two workloads are
equivalent for knob tuning.

5.3 Runtime-Adaptive Compression

In this section, we demonstrate how to derive a representative
subset of SQL queries from the evolving runtime profile by employ-
ing a greedy algorithm that optimizes the representativity metric.
Subsequently, we introduce the adaptive compression strategy.
Greedy Algorithm-based SQL Subset Selection. We formalize
the compression problem as follows:

maximize R(W’,W)

subjectto Y cw c(qQ) <B, W CW
Optimizing the set function in this formulation is NP-hard [34].
However, we need to calculate an effective compressed workload
with low overheads, otherwise we would lose the very purpose of
workload compression in the first place [7]. Therefore, we develop a
greedy algorithm (Algorithm 1) that trades-off accuracy to optimize
representativity efficiently. Instead of enumerating all possible query
combinations and finding the one which maximizes representativity,
we loop over queries in W time after time, and each time we add one
query that maximizes the normalized marginal gain A(q|W’;_;) to
the current compressed workload W’;. The marginal gain is defined
as
R(W’' U {q},W) - R(W', W)

c(q) '

In other words, the algorithm greedily chooses the query with the
best gain per unit of cost [8]. A 1— 1 approximation guarantee [34]
is achieved by it when optimizing objectives holding two attributes:
(1) monotonicity which means adding more samples cannot decrease
the function value, and (2) submodularity which means the marginal
gain of adding a new element decreases as the set grows. It is
apparent that representativity holds these two attributes.

More importantly, in the context of knob tuning, adding a new
query to the current set incurs the cost of executing this query for
the missing configurations (detailed in Section 6). Since different
queries have different costs, we need to consider this factor in our
greedy algorithm. We quantify the additional costs of a query as
follows:

A(qIW') =

Definition 5.7 (Lacked History). Given arun history H that records
each query’s performance across all proposed configurations (see
Table 2), #lacked_history(q) is the number of configurations in H
for which performance on q is missing.

We define the final marginal gain (before normalization) to si-
multaneously maximize representativity and minimize additional
costs as follows:

R(W’' U {q}, W) - R(W', W)
c(q)

where f serves is a hyperparameter that balances overhead and the

marginal gain of adding a new query. As f increases, queries with

fewer missing performances in existing configurations are more

likely to be selected.

The algorithm starts with an empty set (line 1) and initializes the
marginal gain of each query (line 2). At the i-th iteration of the main

A(qIW’) =

—Px#lacked_history(q).

Conference’17, July 2017, Washington, DC, USA

Algorithm 1: Greedy SQL Subset Selection

Input: Target Workload W; Compression Ratio 7;
Output: Compressed Workload W’.

1 W10

2 Yq e W:A(q) « R({q},W)

3 while W0 do

4 A* — —o0
5| My = maxgey OV UIIWROVW)
. my = mingew R(Su{q},:x(f()l)—R(w/,W)
7 M, = maxqew #lacked_history(q)
8 my = mingew #lacked_history(q)
9 for q in Wdo
10 if A(q) > A* then
" A(q) RWUILLWIRO W-ciqim, _
#lacked_history(q)—mg
P m
12 end
13 if A(q) > A* then
14 A* — A(q)
15 q-—q
16 end
17 end
18 if c(W’) +¢c(q*) < nxc(W) then
19 ‘ W «— W' U{q"}
20 end
21 W — W\{q*}
22 end

23 return W’;

loop (line 3), it first computes the maximum and minimum values
of the marginal gain (line 5, 6) and #lacked_history(q) (line 7, 8) a
query from W could have. These values are later used to normalize
the marginal gain and the penalty in line 11. Then we loop over
queries in W to find the query with the highest marginal gain (line
9-16). Note that we employ the CELF (Cost-Effective Lazy Forward
selection) algorithm [26] which utilizes the monotonicity and sub-
modularity attributes of R to minimize function evaluations (lines
10). Assume we are in the i-th iteration of the while loop. In line
10, if A(q), which is actually A(q|W’;)(j < i), is not more than the
current best marginal gain A*, then the real A(q|W’;) should be less
than A* due to the submodularity of R (i.e., A(q|W’;-1)>A(q|W’;)
holds). In this case, we are exempt from calculating A(q|W’;) in
line 11. In line 11, we normalize both the marginal gain and the
lacked history penalty to a common scale (0 to 1) using min-max
scaling. This ensures that the hyperparameter f provides a balanced
trade-off between the two competing objectives. Finally, the query
that maximizes the marginal gain is added to W’, provided it does
not exceed the compression ratio 5 (line 18, 19).

Runtime Analysis. The algorithm’s runtime depends on the num-
ber of queries, n, and the number of configurations, m. In the worst-
case scenario, the main while loop (line 3) iterates n times, com-
puting the marginal gain (line 11) for each query in every iteration.

This nested process leads to a time complexity of O(n?). The com-
putation of R involves a nested loop of m configurations, adding a
complexity of O(m?) to that step. Consequently, the total runtime
complexity for compressing a workload is O(n?m?). Despite the
polynomial complexity, the method is highly practical for its in-
tended use. In the knob-tuning literature, both n and m are typically
on the order of hundreds [5, 9, 10, 12, 17, 23, 24, 27, 42, 54, 57, 58],
making the computation feasible. Furthermore, as we show in the
cost analysis in Section 8.5, the overhead from WATER is negligible
compared to the overall cost of the tuning process itself. Finally,
handling streaming workloads or workloads with a huge number of
queries is considered outside the scope of this work and constitutes
a separate research direction [51].

Adaptive Compression Strategy. Workload compression occurs
at the beginning of each time slice, leveraging an evolving runtime
profile to continuously refine the subset. As more data becomes
available, the subset becomes increasingly representative. Period-
ically updating the subset also prevents the optimization process
from getting trapped in local optima, which can happen with a
fixed subset. The compression ratio 7 is dynamic and decreases
to increase the subset size when optimization fails to find a better
configuration within a time slice. This indicates that the subset
may not be sufficiently representative, reaching its representativity
limit. Although reducing 7 increases overhead, it enhances subset
representativity and enables more effective optimization.

6 History Reuse for Efficient Tuning

After workload compression, we get a newly selected SQL subset
which is then frequently evaluated to guide the optimization. In
this section, we first introduce the challenge when tuning different
subsets in different time slices, then we discuss how we address
this challenge to achieve efficient subset tuning.

Challenge. Effective knob tuning depends on a well-trained sur-
rogate model that accurately predicts a workload’s performance
across various configurations. Existing methods maintain a sin-
gle surrogate because they focus on a fixed workload [17, 23, 55].
In contrast, we tune different SQL subsets over time slices, ne-
cessitating a new surrogate for each subset since one surrogate
cannot model multiple workloads. Bootstrapping a surrogate from
scratch is costly, requiring numerous workload executions to gather
training data. Although some transfer learning techniques enhance
efficiency, they demand collecting thousands to tens of thousands
of observations in advance [27, 42, 57], which is time-consuming
and not universally applicable across different systems, hardware,
and workloads. Moreover, transferred observations may not fit new
subsets well, potentially misleading the optimization process.
History Reuse for Surrogate Bootstrapping. We leverage ex-
ecution statistics for queries in the selected subset W’ from pre-
vious time slices, recorded in the tuning history H, to bootstrap
the surrogate without expensive workload executions. There are
two scenarios: S1 (Complete History): If every query in W’ has been
executed for all configurations in H, we sum their execution times
per configuration to determine the total execution time for W’ on
those configurations. This data is then used to bootstrap the sur-
rogate (Example 3). S2 (Incomplete History): If some queries in W’
lack execution times for certain configurations, we execute these

WATER: A Workload-Adaptive Knob Tuning System

missing queries for those configurations (Example 4) and then ag-
gregate as in S1. Although this incurs some costs, it is significantly
cheaper than bootstrapping the surrogate from scratch. To account
for these costs, we incorporate a penalty term in the marginal gain
computation (Algorithm 1, line 11) as discussed in Section 5.3.
This method allows us to bootstrap the surrogate on the fly
without costly initial workload executions and ensures the data
accurately reflects the subset’s performance. As optimization pro-
gresses, accumulating data enhances the surrogate’s accuracy for
subsequent time slices.
Subset Tuning. After bootstrapping the surrogate, we use the tuner
to optimize the subset. In each iteration, a proposed configuration
is evaluated on the subset to update its best performance, and
the resulting performance metrics are sent to the tuner to guide
subsequent optimizations.

Table 2: A Toy Example of History

| & 0 05
qQ | H[q:,01] H[qi,02] H[q,05]
q2 H[qy, 6] H|[qy, 03]
qs H[qs, 01]
q4 H([q4,0:] H[q4,0:] H[qg, 03]

ExAMPLE 3. Assume W’ = {q;,qs} for the subsequent time
slice and we have run history illustrated in Table 2. The surrogate
for the next time slice should be bootstrapped with the data:

{(01, H[{q1, 94}, 011), (02, H[{q1, 94}, 02]), (63, H[{q1. 94}, 63]) }.

ExamPLE 4. Assume W’ = {q,qs3} for the subsequent time
slice and we have run history illustrated in Table 2 which lacks
H[qy, 621, H[qs, 02], H[q3, 05]. We need to deploy 6, and run q, qs,
and deploy 05 and run qs.

7 Configuration Pruning, Ranking, Verification

After multiple subset tuning iterations, we identified and evaluated
several configurations on the selected subset. However, our ulti-
mate goal is to find configurations that perform well on the entire
workload and report the real performance. To avoid exhaustive ver-
ification, we focus only on promising configurations by applying
heuristic rules to eliminate unpromising ones, ranking the remain-
ing options with a hybrid scoring mechanism, and selecting top
configurations (e.g., 30%) for verification on the entire workload.
Motivation. When selecting configurations for the entire work-
load, we face the exploration-exploitation dilemma [1]. Exploita-
tion chooses the best configuration based on current knowledge,
including subset performance and model predictions. However, this
can lead to suboptimal configurations, as a configuration that per-
forms well on a subset may perform poorly on the full workload.
Additionally, prediction models may be biased toward familiar con-
figurations while underestimating unfamiliar ones. Exploration, on
the other hand, involves testing some unfamiliar configurations
to discover unexpectedly high performers. Balancing exploration
and exploitation is essential for achieving a global optimum. To
address this, we propose a hybrid scoring mechanism that effectively
balances both strategies by scoring candidate configurations and
selecting the top-ranked ones for further verification.

Conference’17, July 2017, Washington, DC, USA

Global Surrogate. We maintain a global surrogate model, RF,
for scoring, trained on historical (6, H[W, 8]) pairs. It predicts
performance and uncertainty estimates. We use a random forest
regressor for its superior performance in knob tuning [55] and
ability to quantify uncertainty [15].

Definition 7.1 (Uncertainty). Given an unlabeled configuration
0 and a Random Forest RF = {rfi,...,rfn} with n estimators, the
uncertainty ¥ (6, RF) is the variance of their predictions for 6.

Exploitation. We approximate a candidate configuration 6’s per-
formance by combining its subset execution time cost(W’) with
the global surrogate R¥’s prediction. The predicted performance
(lower is better), fw(9), is formulated as follows:
; W'
) =101~ 1
Exploration. Inspired by active learning [4, 32, 37], we priori-
tize configurations that differ significantly from already labeled
instances (i.e., H[W, 0] is available) or those where the surrogate
has low confidence in the prediction. We first introduce the defini-
tion of SetSimilarity and Uncertainty.

YRF (0) + cost(W')]. 3)

Definition 7.2 (SetSimilarity). Given a labeled configuration set D
and an unlabeled configuration 0, SetSimilarity ®(0, D) = finaz))($(0,4d),
€

where ¢ is the similarity function.

We use the Gower distance D(x, y), which measures the distance
between two data points with mixed types of variables (numerical
and categorical) [11], to define the similarity function ¢:

¢@w=rﬁ%@?

where

1 n
D(xy) =~ > di(xy),
i=1

and for numerical variables:

|xi — il
di(x,y) = ————————,
(x.9) max(x;) — min(x;)
and for categorical variables:
0, ifxl- =i
¢mw={ Cnm
1, ifx; #y;

We use 1 — ®(6, D) to give high scores to instances that do not
share much similarity with already labeled documents (diversity).

We use the verification ratio «, the proportion of labeled to
proposed configurations, to balance diversity and uncertainty pri-
oritization. The exploration potential of 6 is defined as:

g(0) =a(1-2(0,D)) + (1 — a)¥ (6, RF) (4)
Hybrid Scoring Mechanism. In each time slice, we randomly
choose to either exploit (fw(H)) or explore (g(0)) a configuration
0. We select exploitation with probability 1 — n (subset volume),
reflecting our current knowledge of 6. The more we know about a

configuration, the more likely we are to exploit it:
5(0) = {fw(Q), w%th probab%l%ty 1-7§)

g(0), with probability n

Configuration Pruning and Selection. In each time slice, when
fw is selected, configurations worse than the default are pruned.

Conference’17, July 2017, Washington, DC, USA

When g is selected, configurations performing 1.2 times worse
than the default are discarded. The remaining configurations are
scored by the corresponding function, and the top-scoring ones
are selected for verification. In the first time slice, due to the lack
of labeled data, we simply discard configurations worse than the
default and rank the remaining ones based on their performance
on the compressed workload.

Verification. To verify the selected configurations on the original
workload W, we deploy them to the database and execute only
the remaining subset W — W’, since W’ was already evaluated
during tuning. The execution results update the global surrogate,
and WATER outputs the best-performing configuration.

8 Experiments

8.1 Experimental Setup

Workloads. We focus exclusively on OLAP workloads, as OLTP
workloads are typically evaluated over fixed intervals, making work-
load compression inapplicable. Our experiments utilize three well-
known database benchmarks: TPC-DS, JOB [25], and TPC-H. Since
TPC-DS is unsuitable for knob tuning [55], we exclude templates
with execution times significantly longer than others, following
[13, 18, 19]. For TPC-H, we use two variants: TPC-H and TPC-Hx 10,
the latter of which includes 10 instances generated with different
random seeds per template. Table 3 summarizes the used workloads.

Table 3: Summary of Workloads

Workload Queries Templates Tables Columns
TPC-DS* (sf=1) 88 88 24 237
JOB (5.2GB) 113 113 21 38
TPC-H (sf=10) 22 22 8 55
TPC-Hx10 (sf=10) 220 22 8 55

*: template 1, 4, 6, 11, 14, 23, 24, 39, 74, 81, and 95 are removed.

Hardware. All experiments are conducted on (C1) a virtual ma-
chine with 32 vCPU and 60GB of RAM on a private server with an
AMD EPYC 9654 96-Core Processor, or (C2) Alibaba Cloud Platform
with an ecs.e-c1m4.xlarge instance with 4 vCPU and 16 GB of RAM.
Adopted Tuners. WATER is a generic optimization framework that
enhances the tuning efficiency of existing tuners. We integrate it
with SMAC [30], which recent evaluations [55] show outperforms
eight state-of-the-art DBMS tuners, and with GPTUNER [23], which
leverages domain knowledge for knob tuning. We utilize the open-
source GPTuner code, updating its knowledge based on hardware,
and implement SMAC using the SMAC3 [30] library.

Baselines. We compare WATER with the following baselines: 1.
Original. Utilizes the vanilla tuner (SMAC or GPTUNER) to op-
timize the entire workload, highlighting WATER’s advantages. 2.
GSUM [8]. A state-of-the-art workload compression method that
maximizes both coverage and representativity as described in Section
2.2. 3. Random. Selects SQLs uniformly at random. Both GSUM
and Random are static pre-processing techniques applied initially
to obtain a subset for tuning. If a configuration outperforms the
default on this subset, it is immediately evaluated on the entire
workload. The compression ratios for GSUM and Random are set
to be the same as WATER’s initial compression ratio by default.

WATER Implementation. We implement WATER in Python3 on
top of the two tuners. The global surrogate uses scikit-learn’s Ran-
domForestRegressor [36] with default parameters. The compression
ratio n starts at 0.75 and decreases by 0.1 if no better configuration is
found within a time slice. In Algorithm 1, § is set to 0.1. In each time
slice, 20 valid configurations are proposed during subset tuning,
with 25% (verification ratio) evaluated on the entire workload. For
the initial time slice without runtime history, we employ Latin Hy-
percube Sampling (LHS) [33], a space-filling sampling strategy, to
generate ten samples for surrogate initialization, following previous
works [9, 17, 23, 55]. We use GSUM to select the initial subset.
Tuning Settings. We conduct experiments with PostgreSQL v14.9,
tuning 57 knobs from GPTUNER’s open-source repository [22]. For
each method, we perform three tuning sessions and report the
average best performance (over the entire workload) with a solid
line and [5%, 95%] confidence interval shaded in the same color [17].
Following [48, 49, 56], we use total workload execution time as the
performance metric. Each method undergoes at least 100 tuning
iterations, with the first 10 generated randomly using LHS [33],
following previous works [9, 23, 42, 55]. For failed or long-running
configurations (those causing DBMS crashes or taking more than
twice the execution time of the default), we assigned twice the
default performance to prevent scaling issues [43].

Evaluation Metrics. Following LlamaTune [17], we use two met-
rics to evaluate WATER: final performance improvement (i.e.,
execution time reduction) and relative time-to-optimal speedup,
which reports the earliest iteration at which WATER has found a
better-performing configuration compared to the baseline optimal,
as well as the relative speedup.

8.2 Performance Comparison

End-to-end Comparison. Figure 6 compares WATER (integrated
with GPTUNER) against baselines. The initial gap in the red line
reflects cold-start compression and subset tuning times during the
first time slice. Compared to Original, WATER achieves the best
performance identified by GPTUNER 4.2X faster across all four
workloads on average. Specifically, WATER delivers time-to-optimal
speedups of 2.5x for TPC-DS, 2.1x for JOB, and 11.0x for TPC-
Hx10, thanks to improved runtime efficiency. In terms of final
results, WATER reduces execution time by an average of 39.1%
compared to the default and is 6.4% faster than GPTUNER’s best.
WATER’s advantage over GPTuner on the TPC-H benchmark is
initially modest, a result of two key factors. First, with only 22
queries, any small subset struggles to capture the diverse perfor-
mance characteristics of the full workload. Second, the workload’s
shorter execution time lessens the overall impact of runtime effi-
ciency gains. However, WATER’s dynamic strategy proves crucial
in the long run. By continuously refining its query subset, it avoids
the performance plateaus that cause static methods like GSUM
and Random to stagnate, ultimately allowing it to find superior
configurations in later stages.

While GSUM and Random find interesting configurations early
on, their optimization stagnates, ultimately failing to outperform
GPTUNER on average. Despite being a generic compression frame-
work, GSUM does not always surpass random sampling in knob
tuning, as its features are not specifically designed for this task and
may lead to suboptimal compression. Random typically produces

WATER: A Workload-Adaptive Knob Tuning System

—&— WAter GPTuner

(o]
a1
T
-
o
o

Execution Time (s)
©
<]
Execution Time (s)
@
o

~

a1
-
-
o

~
©
o

5000 10000
Tuning Time (s)
(a) TPC-DS

15000 5000 10000
Tuning Time (s)

(b) JOB

15000

Conference’17, July 2017, Washington, DC, USA

—¥— GSUM —A&— Random

135 . 1300

O O

2 120 2 1100

= =

5105 5 %

5 5 700)

g 90 o M
x x

w w

10000
Tuning Time (s)
(¢) TPC-H 22 SQLs

15000 20000 50000
Tuning Time (s)

(d) TPC-H 220 SQLs

5000 80000

Figure 6: Performance on different benchmarks (bottom-left is better)

—&— WAter

o]

a
-
[$)]
o

-
N
(9]

Execution Time (s)
©
<)
Execution Time (s)

|
|

5000 10000
Tuning Time (s)
(a) TPC-DS

15000 5000 10000
Tuning Time (s)

(b) JOB

15000

SMAC

1300
135

@ @

Q [0}

£ 120 £ 1100

= =

5 105 5

-% t‘\.v ,g 900

Q (8]

g 90 <

= ‘w * 700

5000 10000
Tuning Time (s)
(c) TPC-H 22 SQLs

15000 20000 50000
Tuning Time (s)

(d) TPC-H 220 SQLs

80000

Figure 7: Performance on different benchmarks (SMAC-based) (bottom-left is better)

—&— WAter GPTuner
2000 700
@ @
» 1900 °
£ IS
= =
— 1800 ~ 550
S S
3 1700 % g
2 2
u W00 =09 olo-oo

20000 60000
Tuning Time (s)
(a) TPC-DS(sf=10)

100000 10000 25000
Tuning Time (s)

(b) TPC-H(sf=50) 22 SQLs

Figure 8: Performance under different scale factors

—0— WAter GPTuner
135 280
O O
[0} [0}
E£120 £
L =220
S S
=105 5 s
E oy
w "oy i 160
9% ha STEAFI
5000 10000 15000 5000 10000 15000
Tuning Time (s) Tuning Time (s)
(a) TPC-DS (b) JOB

Figure 9: Performance on different machine

wider shadows in the figure, particularly for workloads with fewer
SQLs (e.g., TPC-H), indicating greater instability. To ensure fairness,
we also compare GSUM under modified compression ratios with
WATERON TPC-DS. As shown in Figure 10, GSUM underperforms
WATER on all compression ratios of 0.3, 0.5, and 0.7.

40000

8.3 Robustness Study

Different Optimizer. To demonstrate WATER’s versatility with dif-
ferent optimizers, we replace the optimizer with SMAC. As shown
in Figure 7, WATER outperforms vanilla SMAC across all four work-
loads, achieving a 37.5% mean reduction in execution time com-
pared to the default and 6.6% less time than SMAC’s best configura-
tion. Additionally, WATER provides a 3.1X time-to-optimal speedup
on average. We achieve speedups of 3.8x and 5.3X on TPC-DS
and JOB, reducing execution time by 15.9% and 40.0%, respectively.
While TPC-H remains a challenge for WATER, it initially lags but
ultimately outperforms the vanilla optimizer as the subset evolves.
Different Data Size. We study WATER’s scalability across different
database sizes by varying the scale factor of TPC-H from 10 to
50 and TPC-DS from 1 to 10. As shown in Figure 8, compared to
GPTUNER, WATER finds better configurations in much less time.
For both of the workloads, WATER finds better configurations than
the optima of GPTUNER at the very beginning, achieving time-to-
optimal speedups of 12.9% and 9.8x for TPC-DS and TPC-H. In
the end, WATER achieves execution times which are 16.8% and
43.5% less than default and 5.7% and 16.2% less than GPTUNER
on TPC-DS and TPC-H respectively. This demonstrates that as
the cost of a single evaluation increases, the benefit of WATER’s
runtime efficiency becomes overwhelmingly significant, allowing
it to explore many more configurations in the same time budget.

Different Hardware. We switch from hardware C1 to C2, which
has significantly fewer CPU cores and less RAM. This change makes
optimization more challenging because reduced resources increase
the complexity of modeling the relationship between configurations

Conference’17, July 2017, Washington, DC, USA

—0— WAter —¥— GSUM-0.5 —0— WAter
GSUM-03 —A— GSUM-0.7 —— WAter-1 (GSUM)
—A— WAter-1 (Random)

85

@ 85 @
[}

[0}
£ g

c 80 = 80
k<] c
5 £
g 3

i 75 L 75
w

& 5000 10000 15000 79

5000 10000
Tuning Time (s)
(a) Adaptive Workload Compression

Tuning Time (s) 15000
Figure 10: GSUM with Differ-
ent Compression Ratio

and DBMS performance, revealing more bottlenecks and shrinking
the feasible region [23]. We exclude TPC-H experiments as they
frequently cause system crashes on C2. Figure 9 shows that com-
pared to GPTUNER, WATER finds better configurations in fewer
iterations for both workloads. For JOB, WATER identifies a con-
figuration superior to GPTUNER’s best on the first attempt (7.9x
speedup) and ultimately achieves a workload execution time 7.6%
less than GPTUNER’s best. For TPC-DS, WATER achieves a 1.9x
time-to-optimal speedup and reduces execution time by 3.6%.

8.4 Ablation Study

Effect of Adaptive Workload Compression. We evaluate our
adaptive workload compression framework and the algorithm from
Section 5 by keeping the subset fixed across all time slices. Using the
same subsets as GSUM and Random, denoted “WATER-1 (GSUM)”
and “WATER-1 (Random)”, Figure 11(a) shows that WATER outper-
forms both, achieving speedups of 2.0x and 4.3%, and reducing
execution time by 1.1% and 3.6%, respectively.

Effect of History Reuse. To assess History Reuse for Efficient
Subset Tuning (Section 6), we use LHS [33] to randomly sample
and evaluate configurations to bootstrap the surrogate in each time
slice, which is referred to as “WATER-2". As shown in Figure 11(b),
WATER-2 stagnates early in optimization, while WATER achieves an
additional 3.8% reduction in execution time and a 3.5X speedup. The
result is due to WATER-2’s initialization overhead and undertrained
surrogates from limited observations.

Effect of Hybrid Scoring Mechanism. To demonstrate the hybrid
scoring mechanism’s effectiveness (Section 7), we replace it with
a scoring method based solely on subset performance, denoted
“WATER-3". Figure 11(c) shows that WATER achieves a 4.1x speedup
and reduces execution time by 3.1% compared to WATER-3. This
is because WATER-3 cannot reliably identify configurations that
perform well across the entire workload, since configurations that
perform well on the subset do not necessarily also perform well
across the entire workload.

8.5 Cost Analysis

We divide the tuning time into two parts: (1) Evaluation Time, the
duration spent executing queries, and (2) Other Time, covering

Execution Time (s)

—— WAter —— WAter
—0— WAter-2 —0— WAter-3
- 2%
Q
£
E
80 - 80
8
3
(&}
Q
75 275
70 5000 10000 15000 70 5000 10000 15000

Tuning Time (s)
(b) History Reuse

Tuning Time (s)
(¢) Hybrid Scoring Mechanism

Figure 11: Ablation study of WATER on TPC-DS (bottom-left is better)

tuner’s overhead, algorithmic overhead and so on. Figure 12 shows
the time spent in both categories during 100 tuning iterations for
TPC-H (sf=10) and TPC-H (sf=50) using WATER and GPTUNER. WA-
TER reduces the overall tuning time by 25.5% and 32.8% for TPC-H
(sf=10) and TPC-H (sf=50), respectively, compared to GPTUNER, pri-
marily due to a reduction in “Evaluation Time”. Although WATER
incurs more “Other Time” due to additional overhead (e.g., model
training, more configuration deployments), the large decrease in
“Evaluation Time” more than offsets this. WATER’s advantage is par-
ticularly significant for workloads with a large "Evaluation Time,'
as it can substantially reduce this component. In contrast, "Other
Time" remains unaffected by workload size and stays constant. This
explains why WATER performs better on workloads with larger
scale factors (Figure 8). In real-world production environments,
evaluation times of OLAP workloads are typically much longer
than those presented in our experiments [44, 45, 47], where WATER
demonstrates even greater potential.

10k 58532 .
- B Evaluation Time 60k B Evaluation Time
8k Other Time 50k Other Time
B ek 7 40K
g 2 30k
E 4k E
20k
% 10k
Ok 0Ok
GPTuner ~ WAter GPTuner WAter GPTuner WAter GPTuner WAter

(a) TPC-H (sf=10) (b) TPC-H (sf=50)

Figure 12: Cost Analysis

9 Conclusion

This paper presents WATER, a runtime-efficient and workload-
adaptive knob tuning system. To reduce evaluation costs, WATER
divides the tuning process into time slices and evaluates small,
representative query subsets instead of the full workload. Exper-
iments show that WATER substantially reduces tuning time and
finds superior configurations compared to state-of-the-art methods.

WATER: A Workload-Adaptive Knob Tuning System Conference’17, July 2017, Washington, DC, USA

References

[1] Oded Berger-Tal, Jonathan Nathan, Ehud Meron, and David Saltz. 2014. The
exploration-exploitation dilemma: a multidisciplinary framework. PloS one 9, 4
(2014), €95693.

[22] Jiale Lao. 2024. GPTuner code. Retrieved October 1, 2024 from https://github.com/
SolidLao/GPTuner/blob/main/knowledge_collection/postgres/target_knobs.txt
Jiale Lao, Yibo Wang, Yufei Li, Jianping Wang, Yunjia Zhang, Zhiyuan Cheng,
Wanghu Chen, Mingjie Tang, and Jianguo Wang. 2024. GPTuner: A Manual-
Matteo Brucato, Tarique Siddiqui, Wentao Wu, Vivek Narasayya, and Surajit Reading Database Tuning System via GPT—Gui.ded Bayesian Optimization. Proc.
Chaudhuri. 2024. Wred: Workload Reduction for Scalable Index Tuning. Proc. YLDB Endoyv. 17, 8 (may 20.24)} 1?397'1952' d01:10.14.?78/3659437.3'659449
ACM Manag. Data 2, 1, Article 50 (mar 2024), 26 pages. doi:10.1145/3639305 [24] Jiale Lao, Yibo Wang, Yufei Li, Jianping Wang, Yunjia Zhang, Zhiyuan Cheng,
[3] Baoqing Cai, Yu Liu, Lin Ma, Pingqi Huang, Bingcheng Lian, Ke Zhou, Jia Yuan, Wanghu Ch?“’ Yuanchun Zhou, Mingjie Tang, and]1arfguo Wang. 2024’, A
Jie Yang, Xiaofan Cai, and Peijun Wu. 2025. SCompression: Enhancing Database Demonstration of GPTuner: A GPT-Based Manual-Reading Database Tuning
Knob Tuning Efficiency Through Slice-Based OLTP Workload Compression. System. In Companion of the 2024 International Conference on Management of Data
Proceedings of the VLDB Endowment 18, 6 (2025), 1865-1878. (Santiago AA, Chile) (SIGMOD/PODS °24). Association for Computing Machinery,

[4] Thiago N.C. Cardoso, Rodrigo M. Silva, Sérgio Canuto, Mirella M. Moro, and N?W York, NY, USA, 504'_507' dOi:IO'l145/3626246'3654739
Marcos A. Gongalves. 2017. Ranked batch-mode active learning. Information Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and
Sciences 379 (2017), 313-337. doi:10.1016/j.ins.2016.10.037 Thomas Neumann. 2015. How Good Are Query Optimizers, Really? Proc. VLDB

[5] Stefano Cereda, Stefano Valladares, Paolo Cremonesi, and Stefano Doni. 2021. Endow. 9, 3 (Nov. 2015), 204-215. doi:lOA14778/2_850583_2850594
CGPTuner: a contextual gaussian process bandit approach for the automatic [26] Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne
tuning of IT configurations under varying workload conditions. Proc. VLDB VanBriesen, and Natalie Glance. 2007. Cost-effective outbreak detection in
Endow. 14, 8 (apr 2021), 1401-1413. doi:10.14778/3457390.3457404 networks. In Proceedings of the 13th ACM SIGKDD International Conference
[6] Surajit Chaudhuri, Prasanna Ganesan, and Vivek Narasayya. 2003. Primitives on Knowleqlg? Discovery and D ata Mint:ng (San Jose, California, USA) (KDD
for workload summarization and implications for SQL. In Proceedings of the 29th 07')‘ Association for Computing Machinery, New York, NY, USA, 420-429.
International Conference on Very Large Data Bases - Volume 29 (Berlin, Germany) d°“19-1 145{1281 192.1281239 . .
(VLDB "03). VLDB Endowment, 730-741. [27] Guoliang Li, Xuanhe Zhou, Shifu Li, and Bo Gao. 2019. QTune: a query-aware
[7] Surajit Chaudhuri, Ashish Kumar Gupta, and Vivek Narasayya. 2002. Compress- database tuning system with @eep reinforcement learning. Proc. VLDB Endow. 12,
ing SQL workloads. In Proceedings of the 2002 ACM SIGMOD International Confer- 12 (aug 2019}’ 2118-2130. d01:1014778/3352063‘33‘52129 .
ence on Management of Data (Madison, Wisconsin) (SIGMOD 02). Association for Timothy P Lillicrap, Jonathan] Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Computing Machinery, New York, NY, USA, 488-499. doi:10.1145/564691.564747 Yuval Tassa, David Silver, and Daan Wierstra. 2015. Continuous control with
[8] Shaleen Deep, Anja Gruenheid, Paraschos Koutris, Jeffrey Naughton, and Stratis deep remforf:emem learnlqg: arXiv preprint arXiv:1509.0?971 (2015).
Viglas. 2020. Comprehensive and efficient workload compression. Proc. VLDB Wan Shen Lim, Lin Ma, William Zhang, Matghew Butrovich, Sfxmuel Arch, and
Endow. 14, 3 (nov 2020), 418-430. doi:10.14778/3430915.3430931 Andrew Pavlo. 2024. Hit the Gym: Accelerating Query Execution to Efficiently
[9] Songyun Duan, Vamsidhar Thummala, and Shivnath Babu. 2009. Tuning database Bootstrap Behavior Models for Self-Driving Data!)ase Management Systems. Proc.
configuration parameters with ituned. Proceedings of the VLDB Endowment 2, 1 VLDB En'daw. 17,11 (Aug. 2024), 3680-3693. d01:l'0.14778/3681954}.36'82030
(2009), 1246-1257. [30] Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André Biedenkapp,
[10] Victor Giannakouris and Immanuel Trummer. 2024. Demonstrating -Tune: Ex- Difan Deng, Carolin Bgnjamlnsl, Tim Ruhkopf, René Sass, and Frank Hutter.
ploiting Large Language Models for Workload-Adaptive Database System Tuning. 2022_‘ SMACS: A Versatile Bayeslan Optnplzatlon Package for Hyperparameter
In Companion of the 2024 International Conference on Management of Data (Santi- Optimization. journal of Machine Learning Research 23, 54 (2022), 1-9. http:

ago AA, Chile) (SIGMOD/PODS ’24). Association for Computing Machinery, New I jmlr.org/ paper}s/ v23/ 2}-0888.html . X X X
York, NY, USA, 508-511. doi:10.1145/3626246.3654751 [31] Lin Ma, Bailu Ding, Sudipto Das, and Adith Swaminathan. 2020. Active Learning

[11] John C Gower. 1971. A general coefficient of similarity and some of its properties. for ML llinhanced Database Systems. In Proceedings of the 2020 ACM SIGMOD
Biometrics (1971), 857-871. International Conference on Management of Data (Portland, OR, USA) (SIGMOD
[12] Yaniv Gur, Dongsheng Yang, Frederik Stalschus, and Berthold Reinwald. 2021. 20). Association for Computing Machinery, New York, NY, USA, 175-191. doi:10.
Adaptive Multi-Model Reinforcement Learning for Online Database Tuning.. In 1}45/ 33184'64'33'89768
EDBT. 439—444. Lin Ma, Bailu Ding, Sudipto Das, and Adith Swaminathan. 2020. Active Learning
[13] Stefan Halfpap. 2023. Hybrid Index Selection Using Integer Linear Programming for ML llinhanced Database Systems. In Proceedings of the 2020 ACM SIGMOD
Based on Cached Cost Estimates of Heuristic Approaches. In Proceedings of the 1st ’Internatlor.ml. Conference on Management of Data (Portland, OR, USA) (SIGMQD
Workshop on Simplicity in Management of Data (Bellevue, WA, USA) (SiMoD ’23). '20). Association for Computing Machinery, New York, NY, USA, 175-191. doi:10.
Association for Computing Machinery, New York, NY, USA, Article 5, 4 pages. 1145/3318464'3389768
doi:10.1145/3596225.3596227 [33] Michael D. McKay. 1992. Latin hypercube sampling as a tool in uncertainty
[14] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, analysis of computer models. In Proceedings of the 24th Conference on Winter

and David Meger. 2018. Deep reinforcement learning that matters. In Proceedings Simul.alion (Arlington, Virginia, USA) (WSC_ 92). Association for Computing
of the AAAI conference on artificial intelligence, Vol. 32. Machinery, New York, NY, USA, 557-564. doi:10.1145/167293.167637

G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. 1978. An analysis of approxi-

[23

[2

[

[25

&
2

[29

@
S

[34

[15] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. 2011. Sequential model-) o .
based optimization for general algorithm configuration. In Proceedings of the 5th mations for maximizing submodular set functions-1. Math. Program. 14, 1 (Dec.
International Conference on Learning and Intelligent Optimization (Rome, Italy) 1978), 265-294. doi:10.1007/BF01588971 . e .
(LION’05). Springer-Verlag, Berlin, Heidelberg, 507-523. doi:10.1007/978-3-642- [35] Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin Lin, Jiexi Lin, Lin Ma,
25566-3 40 Prashanth Menon, Todd C Mowry, Matthew Perron, Ian Quah, et al. 2017. Self-
[16] Shrainik Jain, Bill Howe, Jiaqi Yan, and Thierry Cruanes. 2018. Query2Vec: Driving Database Management Systems.. In CID R Vol. 4.1. . .
An Evaluation of NLP Techniques for Generalized Workload Analytics. [36] F.Pedregosa, G. Varoquaux, A Gramfort, V. Michel, B. Thirion, O. Grisel, M.
arXiv:1801.05613 [cs.DB] https://arxiv.org/abs/1801.05613 Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
[17] Konstantinos Kanellis, Cong Ding, Brian Kroth, Andreas Miiller, Carlo Curino, hapead, M Brucher, M. Perrot, and E Duche_snay. 2011. Scikit-learn: Machine
and Shivaram Venkataraman. 2022. LlamaTune: Sample-Efficient DBMS Config- Learning in Python.]oyrnal ofMachtne Learning Research 12 (2011), 2825-2830.
uration Tuning. arXiv:2203.05128 [cs.DB] https://arxiv.org/abs/2203.05128 [37] Burr Settles. 2009. Active learning literature survey. (2009). ,
[18] Jan Kossmann, Stefan Halfpap, Marcel Jankrift, and Rainer Schlosser. 2020. Magic (38] Yu Shen, Xinyuyang Ren, Yupeng Lu, Huaijun Jiang, Huanyong Xu, Di Peng,

mirror in my hand, which is the best in the land? an experimental evaluation Yang Li, Wentao Zhang, and Bin Cui. 2023. Rover: An Online Spark SQL Tuning

of index selection algorithms. Proc. VLDB Endow. 13, 12 (July 2020), 2382-2395.
doi:10.14778/3407790.3407832

[19] Jan Kossmann, Alexander Kastius, and Rainer Schlosser. 2022. SWIRL: Selection

of Workload-aware Indexes using Reinforcement Learning.. In EDBT, Vol. 2.
155-2.

Brian Kroth, Sergiy Matusevych, Rana Alotaibi, Yiwen Zhu, Anja Gruenheid,
and Yuanyuan Tian. 2024. MLOS in Action: Bridging the Gap Between Experi-
mentation and Auto-Tuning in the Cloud. Proc. VLDB Endow. 17, 12 (Nov. 2024),
4269-4272. doi:10.14778/3685800.3685852

Mayuresh Kunjir and Shivnath Babu. 2020. Black or White? How to Develop an
AutoTuner for Memory-based Analytics. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data (Portland, OR, USA) (SIGMOD
’20). Association for Computing Machinery, New York, NY, USA, 1667-1683.
doi:10.1145/3318464.3380591

Service via Generalized Transfer Learning. In Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (Long Beach, CA, USA) (KDD
°23). Association for Computing Machinery, New York, NY, USA, 4800-4812.
doi:10.1145/3580305.3599953

Tarique Siddiqui, Saehan Jo, Wentao Wu, Chi Wang, Vivek Narasayya, and Surajit
Chaudhuri. 2022. ISUM: Efficiently Compressing Large and Complex Workloads
for Scalable Index Tuning. In Proceedings of the 2022 International Conference on
Management of Data (Philadelphia, PA, USA) (SIGMOD °22). Association for Com-
puting Machinery, New York, NY, USA, 660-673. doi:10.1145/3514221.3526152
Jasper Snoek, Hugo Larochelle, and Ryan P Adams. 2012. Practical bayesian
optimization of machine learning algorithms. Advances in neural information
processing systems 25 (2012).

David G. Sullivan, Margo I Seltzer, and Avi Pfeffer. 2004. Using probabilistic
reasoning to automate software tuning. SIGMETRICS Perform. Eval. Rev. 32, 1
(June 2004), 404-405. doi:10.1145/1012888.1005739

https://doi.org/10.1145/3639305
https://doi.org/10.1016/j.ins.2016.10.037
https://doi.org/10.14778/3457390.3457404
https://doi.org/10.1145/564691.564747
https://doi.org/10.14778/3430915.3430931
https://doi.org/10.1145/3626246.3654751
https://doi.org/10.1145/3596225.3596227
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/978-3-642-25566-3_40
https://arxiv.org/abs/1801.05613
https://arxiv.org/abs/1801.05613
https://arxiv.org/abs/2203.05128
https://arxiv.org/abs/2203.05128
https://doi.org/10.14778/3407790.3407832
https://doi.org/10.14778/3685800.3685852
https://doi.org/10.1145/3318464.3380591
https://github.com/SolidLao/GPTuner/blob/main/knowledge_collection/postgres/target_knobs.txt
https://github.com/SolidLao/GPTuner/blob/main/knowledge_collection/postgres/target_knobs.txt
https://doi.org/10.14778/3659437.3659449
https://doi.org/10.1145/3626246.3654739
https://doi.org/10.14778/2850583.2850594
https://doi.org/10.1145/1281192.1281239
https://doi.org/10.14778/3352063.3352129
https://doi.org/10.14778/3681954.3682030
http://jmlr.org/papers/v23/21-0888.html
http://jmlr.org/papers/v23/21-0888.html
https://doi.org/10.1145/3318464.3389768
https://doi.org/10.1145/3318464.3389768
https://doi.org/10.1145/3318464.3389768
https://doi.org/10.1145/3318464.3389768
https://doi.org/10.1145/167293.167637
https://doi.org/10.1007/BF01588971
https://doi.org/10.1145/3580305.3599953
https://doi.org/10.1145/3514221.3526152
https://doi.org/10.1145/1012888.1005739

Conference’17, July 2017, Washington, DC, USA

[42]

[43]

[44]

[45]
[46]

[47

Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang. 2017.
Automatic Database Management System Tuning Through Large-scale Machine
Learning. In Proceedings of the 2017 ACM International Conference on Manage-
ment of Data (Chicago, Illinois, USA) (SIGMOD ’17). Association for Computing
Machinery, New York, NY, USA, 1009-1024. doi:10.1145/3035918.3064029
Dana Van Aken, Dongsheng Yang, Sebastien Brillard, Ari Fiorino, Bohan
Zhang, Christian Bilien, and Andrew Pavlo. 2021. An inquiry into machine
learning-based automatic configuration tuning services on real-world data-
base management systems. Proc. VLDB Endow. 14, 7 (mar 2021), 1241-1253.
doi:10.14778/3450980.3450992

Alexander van Renen, Dominik Horn, Pascal Pfeil, Kapil Vaidya, Wenjian Dong,
Murali Narayanaswamy, Zhengchun Liu, Gaurav Saxena, Andreas Kipf, and Tim
Kraska. 2024. Why TPC is Not Enough: An Analysis of the Amazon Redshift Fleet.
Proc. VLDB Endow. 17, 11 (Aug. 2024), 3694-3706. doi:10.14778/3681954.3682031
Alexander van Renen and Viktor Leis. 2023. Cloud Analytics Benchmark. Proc.
VLDB Endow. 16, 6 (Feb. 2023), 1413-1425. doi:10.14778/3583140.3583156
Oleksii Vasyliev. [n.d.]. PGTune. Retrieved October 1, 2024 from https://pgtune.
leopard.in.ua

Midhul Vuppalapati, Justin Miron, Rachit Agarwal, Dan Truong, Ashish Motivala,
and Thierry Cruanes. 2020. Building an elastic query engine on disaggregated
storage. In Proceedings of the 17th Usenix Conference on Networked Systems Design
and Implementation (Santa Clara, CA, USA) (NSDI'20). USENIX Association, USA,
449-462.

[48] Junxiong Wang, Immanuel Trummer, and Debabrota Basu. 2021. UDO: universal

database optimization using reinforcement learning. Proc. VLDB Endow. 14, 13
(sep 2021), 3402-3414. doi:10.14778/3484224.3484236

[49] Junxiong Wang, Immanuel Trummer, and Debabrota Basu. 2021. UDO: universal

[50]

[51]

[52]

database optimization using reinforcement learning. Proc. VLDB Endow. 14, 13
(sep 2021), 3402-3414. doi:10.14778/3484224.3484236

D.H. Wolpert and W.G. Macready. 1997. No free lunch theorems for optimization.
IEEE Transactions on Evolutionary Computation 1, 1 (1997), 67-82. doi:10.1109/
4235.585893

Peizhi Wu and Zachary G. Ives. 2024. Modeling Shifting Workloads for Learned
Database Systems. Proc. ACM Manag. Data 2, 1, Article 38 (March 2024), 27 pages.
doi:10.1145/3639293

Yang Wu, Xuanhe Zhou, Yong Zhang, and Guoliang Li. 2024. Automatic index
tuning: A survey. IEEE Transactions on Knowledge and Data Engineering 36, 12

[53

[54

[56

[57

[59

[60

]

]

(2024), 7657-7676.

Tao Yu, Zhaonian Zou, Weihua Sun, and Yu Yan. 2024. Refactoring Index Tuning
Process with Benefit Estimation. Proc. VLDB Endow. 17, 7 (may 2024), 1528-1541.
doi:10.14778/3654621.3654622

Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li, Zhili Xiao, Bin Cheng, Jiashu Xing,
Yangtao Wang, Tianheng Cheng, Li Liu, Minwei Ran, and Zekang Li. 2019. An
End-to-End Automatic Cloud Database Tuning System Using Deep Reinforcement
Learning. In Proceedings of the 2019 International Conference on Management
of Data (Amsterdam, Netherlands) (SIGMOD ’19). Association for Computing
Machinery, New York, NY, USA, 415-432. doi:10.1145/3299869.3300085

Xinyi Zhang, Zhuo Chang, Yang Li, Hong Wu, Jian Tan, Feifei Li, and Bin Cui. 2022.
Facilitating database tuning with hyper-parameter optimization: a comprehensive
experimental evaluation. Proc. VLDB Endow. 15, 9 (may 2022), 1808-1821. doi:10.
14778/3538598.3538604

Xinyi Zhang, Zhuo Chang, Hong Wu, Yang Li, Jia Chen, Jian Tan, Feifei Li, and
Bin Cui. 2023. A Unified and Efficient Coordinating Framework for Autonomous
DBMS Tuning. Proc. ACM Manag. Data 1, 2, Article 186 (June 2023), 26 pages.
doi:10.1145/3589331

Xinyi Zhang, Hong Wu, Zhuo Chang, Shuowei Jin, Jian Tan, Feifei Li, Tieying
Zhang, and Bin Cui. 2021. ResTune: Resource Oriented Tuning Boosted by Meta-
Learning for Cloud Databases. In Proceedings of the 2021 International Conference
on Management of Data (Virtual Event, China) (SIGMOD °21). Association for
Computing Machinery, New York, NY, USA, 2102-2114. doi:10.1145/3448016.
3457291

Xinyi Zhang, Hong Wu, Yang Li, Jian Tan, Feifei Li, and Bin Cui. 2022. Towards
Dynamic and Safe Configuration Tuning for Cloud Databases. In Proceedings
of the 2022 International Conference on Management of Data (Philadelphia, PA,
USA) (SIGMOD °22). Association for Computing Machinery, New York, NY, USA,
631-645. doi:10.1145/3514221.3526176

Xinyi Zhang, Hong Wu, Yang Li, Zhengju Tang, Jian Tan, Feifei Li, and Bin Cui.
2023. An Efficient Transfer Learning Based Configuration Adviser for Database
Tuning. Proc. VLDB Endow. 17, 3 (nov 2023), 539-552. do0i:10.14778/3632093.
3632114

Xinyang Zhao, Xuanhe Zhou, and Guoliang Li. 2023. Automatic Database Knob
Tuning: A Survey. IEEE Transactions on Knowledge and Data Engineering 35, 12
(2023), 12470-12490. doi:10.1109/TKDE.2023.3266893

https://doi.org/10.1145/3035918.3064029
https://doi.org/10.14778/3450980.3450992
https://doi.org/10.14778/3681954.3682031
https://doi.org/10.14778/3583140.3583156
https://pgtune.leopard.in.ua
https://pgtune.leopard.in.ua
https://doi.org/10.14778/3484224.3484236
https://doi.org/10.14778/3484224.3484236
https://doi.org/10.1109/4235.585893
https://doi.org/10.1109/4235.585893
https://doi.org/10.1145/3639293
https://doi.org/10.14778/3654621.3654622
https://doi.org/10.1145/3299869.3300085
https://doi.org/10.14778/3538598.3538604
https://doi.org/10.14778/3538598.3538604
https://doi.org/10.1145/3589331
https://doi.org/10.1145/3448016.3457291
https://doi.org/10.1145/3448016.3457291
https://doi.org/10.1145/3514221.3526176
https://doi.org/10.14778/3632093.3632114
https://doi.org/10.14778/3632093.3632114
https://doi.org/10.1109/TKDE.2023.3266893

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Database Knob Tuning
	2.2 Workload Compression

	3 Motivation
	4 System Overview
	5 Workload Compression
	5.1 Problem Formulation
	5.2 Representative Subset
	5.3 Runtime-Adaptive Compression

	6 History Reuse for Efficient Tuning
	7 Configuration Pruning, Ranking, Verification
	8 Experiments
	8.1 Experimental Setup
	8.2 Performance Comparison
	8.3 Robustness Study
	8.4 Ablation Study
	8.5 Cost Analysis

	9 Conclusion
	References

